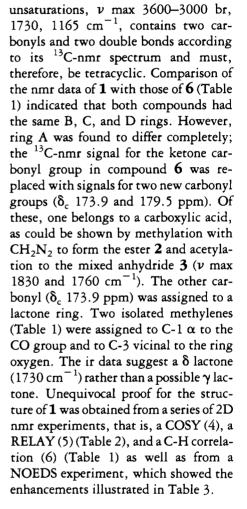
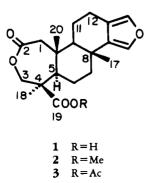
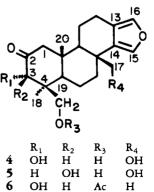
SPONGIALACTONE A, A NEW SPONGIAN DITERPENE FROM SPONGIA ARABICA

S. HIRSCH and Y. KASHMAN*


School of Chemistry, Tel-Aviv University, Ramat Aviv 69978, Israel


In the course of our investigation on the constituents of Red Sea organisms, we have isolated from the sponge Spongia arabica (Spongia officinalis var. arabica, Vacelet) (Spongiidae) a structurally novel metabolite, spongialactone A, for which we propose structure 1. Compound 1, which is a minor constituent of the lipophilic extract of this invertebrate, represents the first spongian (1) with a ring-A lactone, although other spongians with oxygenated C,D rings are known (2,3).


From the same sponge we have isolated as the two major compounds the known 3α , 17, 19-trihydroxyspongia-13 (16), 14-dien-2-one [**4**] (1) and the 3β , 17, 19-trihydroxy spongian derivative **5** and as a minor constituent the new 19acetoxy- 3α -hydroxyspongia-13(16), 14dien-2-one [**6**] (0.1% dry wt). Compound **6** is the acetate of the known diol 3α , 19-dihydroxy-spongia-13(16), 14-dien-2-one (1).

The structures of compounds 4-6 were readily established by comparison of their spectral data with those reported (1). Hydrolysis of acetate 6 gave the known parent diol (1).

Compound **1**, an amorphous powder, $C_{20}H_{26}O_5$ (cims m/z [MH]⁺ 347), eight

Journal of Natural Products

	Compound				
Carbon	1		6		
	$\delta_{C}(mult)$	$\delta_{\rm H}$ (mult, J in Hz)	$\delta_{C}(mult)$	$\delta_{\rm H}$ (mult, J in Hz)	
1	45.8 t	2.61 (brd, 11.7, α)	53.8 t	2.16(d, 18.5, α)	
		2.91 (brd, 11.7, β)		2.64 (d, 18.5, β)	
2	173.9s		203.5 s		
3	72.9 t	$3.93 (brd, 10.4, \alpha)$	74.9 d	4.64 (d, 4.1)	
		4.45 (brd, 10.4, β)			
4	52.6s		44.8 s		
5	56.4 d	2.12(dt, 10.2, 2.8)	54.4 d	$2.10 (m)^{c}$	
6	19.6 t	$1.69 (\mathrm{m}, J_{gem} = 10.3, \alpha, \beta)$	19.3 t	$1.67 (\mathbf{m}, \boldsymbol{\alpha}, \boldsymbol{\beta})^{c}$	
7	39.9 t	1.78 (brt, 10.3, α)	40.1 t	$1.67 (\mathbf{m}, \boldsymbol{\alpha}, \boldsymbol{\beta})^{c}$	
		2.03 (brd, 10.3, β)			
8	34.8 s		34.0 s	_	
9	53.3 d	$1.24 (m)^{c}$	56.5 d	$1.35 (m)^{c}$	
10	39.3 s		38.5 s		
11	22.3 t	$1.72 (m, \alpha)^{c,d}$	20.7 t	1.67 ($\mathbf{m}, \boldsymbol{\alpha}, \boldsymbol{\beta}$) ^{c,d}	
		$1.24 (m, \beta)^{c,d}$			
12	20.7 t	$2.76(dd, 16.2, 5.5, \alpha)$	20.1 t	$2.78 (dd, 16.0, 5.5, \alpha)$	
		$2.44 (ddd, 16.2, 6.8, 3.0, \beta)$		2.39 (ddd, 16.0, 7.3, 3.3, β)	
13	119.2 s		119.1s		
14	136.9 s		136.2 s		
15	134.8 d	7.00(s)	133.3 d	7.09 (brd, 1.4)	
16	137.1d	7.00(s)	137.0 d	7.05 (brt, 1.4)	
17	26.2 q	1.19(s)	25.4q	1.29 (s)	
18	16.3 brg	1.24 (s)	21.1q	1.22 (s)	
19	179.5 s		66.8 t	4.19 (d, 11.5)	
				4.04(d, 11.5)	
20	14.1 q	1.01(s)	20.2 q	0.84(s)	

TABLE 1. ¹H- and ¹³C-nmr Data for Compounds 1 and $6^{a,b}$

^a360 and 90 MHz, respectively, in CDCl₃.

^bThe relationships between the protons and carbons were established by a C-H correlation experiment (J = 140 Hz), and between the protons by a COSY experiment.

^cOverlapping with other protons; location determined by the COSY experiment.

^dThese protons are part of a complex ABMNP system.

Proton	COSY-45 correlations	Long range correlations (RELAY experiment) ^a
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1β 3α, Me-18 6α, 6β 7α 11α, 11β	5α Me-18 7α, 7β, Me-18 Me-17 11α, 12α, 12β
11α	11β, 12α, 12β 12β	16 Me-17

TABLE 2. Correlations Between Protons of Compound 1.

^aThe mixing time (τ_m) is of utmost importance in the RELAY experiment, and no single optimum value exists. By performing a number of RELAY experiments with different τ_m values one may be able to identify certain types of spin systems directly. Under non-optimal conditions long-range cross peaks as in COSYLR also occur.

TABLE 3.

1α.....

NOEDS Correlations of Compound 1.

 $3\alpha(10), 5(3)$

The above spectra together with the NOEDS experiment is the basis of the proposed stereochemistry at C-4 (Me-18 and COOH-19) and C-5 (Figure 1). The relative configurations of the rest of the chiral centers were established by the comparison of the nmr data with that of the reference compounds.

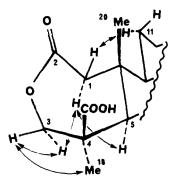


FIGURE 1. The stereochemistry of ring A of 1 as esrablished by nOe experiments.

EXPERIMENTAL

GENERAL EXPERIMENTAL PROCEDURES.— All nmr spectra (in CDCl₃) with TMS as internal standard) were obtained with a Bruker AM-360 spectrometer equipped with an ASPECT 3000 computer. Ir spectra were recorded on a Perkin-Elmer Model 177 spectrophotometer. Mass spectra were recorded with a Finnigan 4020 quadrupole spectrometer equipped with a data system. Ionizing conditions for ei were 23–26 eV and for ci (NH₃) 70 eV.

The sponge was collected in the straits of the Gulf of Eilat near the Gordon reef in July 1985. A voucher specimen has been kept in our collection in Tel Aviv (YK1796).

Freeze-dried material (55 g) was ground and extracted with cold petroleum ether and then with CH_2Cl_2 to give 2.5 g of viscous, dark oil. Repeated Sephadex LH-20 columns eluted with CHCl₃-heptane-MeOH (1:2:1) and flash chromatography on a Si gel-H column eluted with petroleum ether/EtOAc afforded compounds **1–6**. Compound 1 (0.5% of the crude extract).— Amorphous powder; cims m/z [MH]⁺ 347 (100%), 301 (45%), 275 (21%), 231 (4%); $[\alpha]^{25}D + 15^{\circ}$ (c = 0.025, CHCl₃); ¹H nmr, and ¹³C nmr see Table 1. Found: C 69.29, H 7.04; C₂₀H₂₆O₅ requires C 69.34, H 7.56.

Methylation of 1.—Compound 1 (10 mg) in $Et_2O(2 ml)$ was treated with a solution of CH_2N_2 in $Et_2O(5 ml)$ at room temperature overnight to afford, after evaporation, compound 2 (9 mg): an oil; eims m/z [M]⁺ 360 (78%), 345 (100%), 303 (42%), 285 (24%), 187 (5%); ir ν max 2900, 1750, 1725, 1220 cm⁻¹; ¹H nmr (CDCl₃) 3.65 s (OMe); all other resonance lines are the same as in 1.

Acetylation of 1.—Compound 1 (5 mg) was treated with Ac₂O-pyridine (1:1) (0.3 ml) at room temperature overnight to afford, after evaporation, compound 3 (4 mg): an oil; ir ν max 2900, 1830, 1760 cm⁻¹; ¹H nmr (CDCl₃) 2.20 s (Ac); all other peaks identical with those of 1.

Compounds 4 and 5 (2% of the crude extract).— These were found to be identical with compounds reported (as compounds 5 and 9) by Kazlauskas et al. (1).

Compound **6** (0.1% of the crude extract).—Oil; cims m/z [MH]⁺ 373 (100%), 313 (14%), 300 (2%); $[\alpha]^{25}D + 10^{\circ}$ (c = 0.005, CHCl₃); ¹H nmr and ¹³C nmr see Table 1. Found: C 70.53, H 8.04; C₂₂H₃₀O₅ requires C 70.60, H 8.07.

Hydrolysis of **6**.—Compound **6** (10 mg) was treated with a solution of K_2CO_3 -MeOH (4:96) (2 ml) for 30 min at room temperature to afford, after neutralization and evaporation of the organic layer, a compound reported (as compound 3) by Kazlauskas *et al.* (1).

ACKNOWLEDGMENTS

Financial support from Harbor Branch Oceanographic Institution, SeaPharm Project, is gratefully acknowledged. We also thank Prof. J. Vacelet for identifying the sponge and Dr. Y. Benayahu and co-workers for the collection.

LITERATURE CITED

- R. Kazlauskas, P.T. Murphy, R.J. Wells, K. Noack, W.E. Oberhansli, and P. Schonholzer, Aust. J. Chem., 32, 867 (1979).
- P. Karuso and W.C. Taylor, Aust. J. Chem., 39, 1629 (1986).
- M.B. Ksebati and F.J. Schmitz, J. Org. Chem., 52, 3766 (1987).
- A. Bax, R. Freeman, and G. Morris, J. Magn. Reson., 42, 164 (1981).
- 5. A. Bax and G. Drobny, J. Magn. Reson., 61, 306 (1985).
- A. Bax, R.H. Griffey, and B.L. Hawkins, J. Magn. Reson., 55, 301 (1985).

Received 4 March 1988